高二數學備考:數學常用解題思想之數形結合思想方法
發布者:網上發布
高中數學常用解題思想之數形結合思想方法
中學數學的基本知識分三類:一類是純粹數的知識,如實數、代數式、方程(組)、不等式(組)、函數等;一類是關于純粹形的知識,如平面幾何、立體幾何等;一類是關于數形結合的知識,主要體現是解析幾何。
數形結合是一個數學思想方法,包含“以形助數”和“以數輔形”兩個方面,其應用大致可以分為兩種情形:或者是借助形的生動和直觀性來闡明數之間的聯系,即以形作為手段,數為目的,比如應用函數的圖像來直觀地說明函數的性質;或者是借助于數的精確性和規范嚴密性來闡明形的某些屬性,即以數作為手段,形作為目的,如應用曲線的方程來精確地闡明曲線的幾何性質。
恩格斯曾說過:“數學是研究現實世界的量的關系與空間形式的科學?!睌敌谓Y合就是根據數學問題的條件和結論之間的內在聯系,既分析其代數意義,又揭示其幾何直觀,使數量關的精確刻劃與空間形式的直觀形象巧妙、和諧地結合在一起,充分利用這種結合,尋找解題思路,使問題化難為易、化繁為簡,從而得到解決?!皵怠迸c“形”是一對矛盾,宇宙間萬物無不是“數”和“形”的矛盾的統一。華羅庚先生說過:數缺形時少直觀,形少數時難入微,數形結合百般好,隔裂分家萬事休。
數形結合的思想,其實質是將抽象的數學語言與直觀的圖像結合起來,關鍵是代數問題與圖形之間的相互轉化,它可以使代數問題幾何化,幾何問題代數化。在運用數形結合思想分析和解決問題時,要注意三點:第*要徹底明白一些概念和運算的幾何意義以及曲線的代數特征,對數學題目中的條件和結論既分析其幾何意義又分析其代數意義;第二是恰當設參、合理用參,建立關系,由數思形,以形想數,做好數形轉化;第三是正確確定參數的取值范圍。
數學中的知識,有的本身就可以看作是數形的結合。如:銳角三角函數的定義是借助于直角三角形來定義的;任意角的三角函數是借助于直角坐標系或單位圓來定義的。